MAR513: Homework \# 5

Consider the simple radiation boundary condition

$$
\frac{\partial \phi}{\partial t}+c \frac{\partial \phi}{\partial x}=0,
$$

where c is constant.
a. Write down the forward time/backward space finite-difference form of the boundary condition;
b. For a wave of frequency ω and wave number k incident upon the open boundary at x $=0$, find the reflection coefficient for the boundary condition;
c. Show that for $c=0$ and $c=\infty$, the boundary is a perfect reflector;
d. Show (graphically or other ways) that the magnitude of the reflection coefficient is a minimum when $\omega / k=c$.

