
MAR513 Lecture 13: Marine Ecosystem Modeling   

Keynotes: 

1.  Traditional ecosystem model:   

     Complex biological structures but simple physics, focus on making the biological 
system more complex but considering physical processes as a secondary factors than 
biological processes.  

Examples:  
             1-D biological model.  

This type of the model is a good tool to understand the energy transfer between 
trophic levels under given control parameters, but can not use to understand the 
complex ecosystem in the realistic ocean conditions. 

QS: Does it make sense to develop a complex ecosystem model? 



1. Uncertainty    

A straight line can be determined by the linear 
function with two constant parameters a and 
b.  This system is controlled by two degrees 
of freedom, which means that if a and b are 
determined, the function is fixed.  Or, if you 
know the value of y at two points in the x 
axis,  you can determine this function.  
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A curvature line can be fitted using a 
polynomial function. A better fit always 
can be reached by including more higher 
order terms.  However, adding more 
terms increases the degrees of freedom, 
and thus reduce the confidence level! 



1. Stability    

Linear  a 
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Add a perturbation  
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The energy transfers among the trophic levels are characterized by 
nonlinear processes;  
 
The biological processes such as uptake and grazing, etc, are parameterized 
with empirical functions; 
 
Biological parameters are in a wide range of the uncertainty and also varies 
with space and time; 
 
A simple NPZ model includes 7 biological parameters; 
 
A two species NPZD model might includes more than 30 or 40 parameters; 

Since biological parameter varies in a big range, one could easily tune the parameters to make 
the model to fit the data.  Unless most sensitive parameters can be accurately measured, 
tuning the model to fit the model just like using the high-order polynomial to fit the curvature 
line! This is a typical example what we call “false” science! 



To be a good ecosystem modeler,  
 
                              first you should be an honest person!  



What procedures do one need to follow to build an ecosystem model? 

1.  Clear objectives; 

2.  Determine the model structure (variables and forcings) to meet the 

minimum request to achieve your objective; 

3.  Select the empirical functions that are suitable for the local 

ecosystem; 

4.  Determine the biological parameters 

5.  Test the stability of the model system and sensitivities of the model 

to the uncertainty of biological parameters. 



Basic Concepts 

1. Steady State   
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Assume that the concentration in V is zero at initial, we have 
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This state is called “steady state”.  

QS: Does this system depend on the initial concentration in V? 



2. Stability 
In the above example, we show that no matter what the initial concentration in V is, the 
concentration will eventually reach CI. If we treat the initial concentration in V as a 
perturbation (for example, V is filled with a pure water at initial), when the water with a 
concentration of CI flow into V from section A at a speed of U, this inflow water will mix with 
the pure water and flow out of V from section B. Eventually, the concentration in V reaches a 
steady state (CI). Therefore, we say that this system is stable. 

In general,  
 
When  external or internal perturbation occurs, an ecosystem might changes. If 
this system quickly come back to its initial equilibrium state after the 
perturbation stops, then we call this ecosystem stable. Otherwise, it is an 
unstable system. 
 
  

                                C

                         C*                     
U
V

                           CI
                                                                                                                  t (� � )

                          C*



Two types of the stability:  

1)  Local stability: If an ecosystem can come back to the equilibrium states 
before the perturbation, we call this system “local stable system”; 

2)  Global stability: no matter what the initial condition is, the ecosystem 
always can reach an equilibrium state (or steady state), this system is 
called “global stable system”.  

If an ecosystem is local stable, it is generally global stable.  

In the ocean, the ecosystem is generally characterized with a strong nonlinearity. 
Some ecosystem model system might not be able to return back to the equilibrium 
state after perturbation.  If an ecosystem model is not stable, then this ecosystem 
will not have a finite solution.  Such a system meaningless for the ecosystem 
dynamics.  



3. Resilience  

The resilience is defined as the rate at which the ecosystem returns back to its 
initial equilibrium state after the perturbation. This rate is an indicator of the 
relative stability of an ecosystem.  

In our example, the e-folding time scale for the system to return to the steady state 
is  
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TR =
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This time scale is generally called resilience time scale, so the resilience for this 
system is equal to  

! 

Resilience =
1
TR

=
U
V



The resilience time scale usually can be determined by integrating the normal resilience 
rate with respect to the time.  For example,  

 In V, C is the concentration at a time of t, CI is the concentration at the steady state, 
and their difference is C-CI. This difference has its maximum at initial, i.e.  
 
                                                   C*-CI 
 
and decreases exponentially with time.  Then the resilience time scale can be defined 
as  
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For an estaurine case, we can divided the estuary into segments. For example, 
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Ci is the concentration in segment I, then we have  
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Co,i and CI,i are  the initial pertubation and steady state concentration values 
in segment i. 



4. Residence Time 

Assume that C is the concentration in V, and then the total concentration in V equals 
to CV. Assume that U is the inflow velocity, the flux inflow into V is CU. For this 
condition, the residence time is defined as  
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In this case, the residence time is equal to the resilience time 
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Assume that Co is the initial concentration in V, the pure water is flow into V at a 
speed of U, then the residence time can be defined as the flushing time as  

Here, T=V/U is the flushing time, which is the same as the residence time 



Definitions of “Flushing” or “Residence Time” 

Vf: The volume of freshwater in an estuary 
R:   River discharge  

Bowden (1967); Dyer (1973); Fisher et al. (1979) 
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= Alber and Shelden (1999) 

2. Tidal prism method: 
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= VLow: The volume of the water of an estuary at low tide; 

P:      Tidal prism 

Bowden (1967); Dyer (1973) 

3. Modified tidal prism method: 
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4. Dynamical tracer method: 

 
The average time the initially existing water parcels reside in 
the system before they are flushed out 
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1 t is the time; 
M(t) is the total mass of the tracer remains in an estuary 
                 

Wang et al. (2004) 



5. Resistance  

Resistance in the ecosystem dynamics refers to the relative change of a variable 
due to flowing in or flowing out of the biological flux in a system. This usually 
is used to estimate the sensitivity of an ecosystem relative to the change of the 
inflow or outflow, biological parameters, and other factors.  

Assume that F is one of the biological variables, a is the parameter related 
to F, then the sensitivity of F with respect to a can be estimated by 
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In general, if     is larger than 0.5, we treat this parameter as a sensitive 
parameter. The experiments are usually made by changing a by 1% to see if  
    would be larger than 0.5 after F changes.  
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Study Area 



Chen’s Lab at UMASSD 



Surface Residual Flow 











Numerical Model Mesh and Bottom Bathymetry 
Open boundary 

Freshwater discharge Digital Elevation Map 



Scenario 1 : Without inter-tidal salt marshes 

Scenario 2 : With inter-tidal salt marshes 

Tr = 47.5 hrs 

     = 2.0 days 

Tr = 16.4 hrs 

     = 0.7 days 



Scenario 1 : Without inter-tidal salt marshes 

Scenario 2 : With inter-tidal salt marshes 

Tr = 47.5 hrs 

     = 2.0 days 

Tr = 16.4 hrs 

     = 0.7 days 



The spatial distributions of the maximum flood tidal Currents  



A Simple N-P Model 

N: Nutrients; P: Phytoplankton 
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Phytoplankton loss due to outflux 
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The N-P governing equations:  

! 

Vm : The maximum nutrient uptake rate; 

! 

KN : Half-saturation constant; 

! 

"P : 
Mortality rate; 

! 

f (I ) :  the light intensity function.  

1) Conservation 

! 

If N f = "N = "P = 0,  then d
dt

(P+N) = 0

or       P+N = Constant 

Without inflow and outflow, the N-P system is conservative 



2) Steady state solution 
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1.  At the steady state, the nutrient concentration in the system does not depend on the 

nutrient inflow.  

2.  For given biological parameters, the phytoplankton biomass is linearly 

proportional to the nutrient concentration  

3.  When the inflow nutrient is equal to the outflow nutrient, the phytoplankton 

biomass equals zero.   

4.  When  
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Local stability 

Examine if the system could go back to the equilibrium state after perturbation.  
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N = Ns + " N ; P = Ps + " P 

Rewrite N and P as  
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Substituting them into the N-P equations, we have 
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we can get a perturbation equation as  

This is a homogenous differential equation, and the property of its solution 
is determined by the eigenvalues of the matrix given as   
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Define that  
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ˆ P = 0we have  

The solution is  
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If " p = 0, no loss of P from the system, then

                      #1 = 0 and #2 = $("N + ˆ P )

This means that the perturbation of N and P will decay with time. This 
system is stable.  

For a general case 
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("N + ˆ P )2 > 4" p
ˆ P 

The solution will be negative real value. The system is stable.  

! 

("N + ˆ P )2 < 4" p
ˆ P 

The solution will be a complex function. Since the real part of this function is 
 negative, so that the solution is stable.   


