MAR513 Lecture 5: Finite-Volume Methods

Unlike finite-difference and finite-element methods, the computational domain in the finite-volume methods is divided into many control volumes (CV) and the governing equations are solved in its integral form in individual control volumes.

For example:

$$\iint_{\Omega} \left[\frac{\partial \zeta}{\partial t} + \nabla \cdot (\vec{v}D)\right] dx \, dy = 0 \Longrightarrow \frac{\partial \zeta}{\partial t} = -\frac{1}{\Omega} \oint_{s} v_n D ds \tag{7.1}$$

Structured grids

1. Assign the elevation at the center of each rectangular control volume;

2. Define that outflow is positive and inflow is negative;

3. Calculate the net flux

Approximation of volume integrals

n+1

0

 $u_{ml}L$

n •

 $u_n D$

 $-\Delta x$

n-1

 $u_{n-1}L$

$$\iint_{\Omega} \frac{\partial uD}{\partial x} dx dy = \int_{S} uD dy = [u_n D_n - u_{n-1} D_{n-1}] \Delta y$$

$$\frac{\partial uD}{\partial x} \Delta x \Delta y \approx [u_n D_n - u_{n-1} D_{n-1}] \Delta y$$

$$\frac{\partial uD}{\partial x} \approx \frac{[u_n D_n - u_{n-1} D_{n-1}]}{\Delta x}$$
The first order upwind scheme
$$\iint_{\Omega} \frac{\partial uD}{\partial x} dx dy = \int_{S} uD dy = [\frac{u_{n+1} D_{n+1} + u_n D_n}{2} - \frac{u_n D_n + u_{n-1} D_{n-1}}{2}] \Delta y$$

$$\frac{\partial uD}{\partial x} \Delta x \Delta y \approx \frac{\Delta y}{2} (u_{n+1} D_{n+1} - u_{n-1} D_{n-1})$$

$$\frac{\partial uD}{\partial x} \approx \frac{u_{n+1} D_{n+1} - u_{n-1} D_{n-1}}{2\Delta x}$$
The second order central scheme

Consider an arbitrary function like

$$F = \oint f \, ds$$

On the east side, for the first order approximation,

$$F_e = f_e \Delta y$$

For the second order approximation,

$$F_e = \frac{1}{2}(f_{se} + f_{ne})\Delta y$$

For the fourth order approximation,

$$F_e = \frac{\Delta y}{6} (f_{se} + 4f_e + f_{ne})$$

Consider an arbitrary function like

$$F = \iint_{\Omega} f d\Omega = \bar{f} \Delta x \Delta y$$

$$F = f_P \Delta x \Delta y$$

For the second order approximation,

$$F = \overline{f} \Delta x \Delta y$$

The fourth order approximation can be obtained by using the bi-quadratic shape function:

$$f(x, y) = a_o + a_1 x + a_2 y + a_3 x^2 + a_4 y^2 + a_5 xy + a_6 x^2 y + a_7 xy^2 + a_8 x^2 y^2$$

Need 9 coefficients, which can determined by fitting the function to the value of f at 9 locations (nw,w,sw, n, p,s, ne,e, and se).

$$F = \Delta x \Delta y [a_o + \frac{a_3}{12} (\Delta x)^2 + \frac{a_4}{12} (\Delta y)^2 + \frac{a_8}{144} (\Delta x)^2 (\Delta y)^2]$$
$$= \frac{\Delta x \Delta y}{36} (16f_p + 4f_s + 4f_n + 4f_w + 4f_e + f_{se} + f_{sw} + f_{ne} + f_{nw})$$

For the cell-centered grids, the value at P point is known, but values at other points must be obtained by interpolation from surrounding cell-centered nodes.

Comments;

Structured grid finite-volume model is a special type of the finite-difference methods and they always can convert from one to another. So, little efforts need to make to convert a finite-difference model to a finite-volume model under structured grids.

3. Popular unstructured triangular FVM grid in CFD:

- 1. Cell-centered2. Cell-vertex overlapping
- 3. Cell-vertex median

Characteristics of the oceanic motion:

- Free surface----How to calculate accurately the integral form of the surface pressure gradient forcing?
- Steep bottom topography----How to ensure the mass conservation in a two mode model system?
- Open boundary conditions----How to minimize the wave energy reflection at open boundaries?

Cell vertex median grid

A Grid: All variables $(\zeta_{,,u,v,\omega}, \theta, s_{..})$ at nodes

Advantage:

 Simple
 Guarantee the mass conservation for tracers

Disadvantage:

The accuracy of the surface elevation gradient forcing is sensitive to the shape of the control element (due to interpolation)

Hard to ensure the mass conservation at open boundaries

Cell-centered

B Grid: All variables $(\zeta_{,,u,v,\omega}, \theta, s..)$ at centroids

Advantage:

Simple
 Better to advection calculation

Disadvantage:

Hard to guarantee The accuracy of the surface elevation gradient forcing

Hard to ensure the mass conservation at open boundaries

Hard to ensure the mass conservation for tracer calculation

Cell-vertex-centered

C Grid: $\xi, \omega, \theta, s, K_{\rm m}, K_{\rm h}...$

Advantage:

- Combine the best of A and B Grids;
- Easy to ensure the mass conservation for tracers
- Easy to introduce the mass conservative open boundary conditions

1. Advection Scheme

Wind-induced oscillation

Linear, non-dimensional equations:

 $\frac{\partial u}{\partial t} - v = -\lambda \frac{\partial \zeta}{\partial r}$ $\frac{\partial v}{\partial t} + u = -\lambda \frac{\partial \zeta}{r \partial \theta}$ $\frac{\partial \zeta}{\partial t} + \frac{\lambda}{r} \left[\frac{\partial (ru)}{\partial r} + \frac{\partial v}{\partial \theta} \right] = 0$

where $\lambda = \frac{\sqrt{gd}}{r_o f}; \zeta = \eta - \hat{\eta}; \hat{\eta} = \frac{\tau_o r \cos \theta}{\lambda^4}; \tau_o = \frac{g\tau}{r_o^3 f^4}$ and $u|_{r=1} = 0; (u, v, \zeta)_{r=0} \rightarrow finite; u|_{t=0} = v|_{t=0} = 0; \zeta|_{t=0} = -\hat{\eta}(r, \theta)$

Solution:

$$\eta(r,\theta,t) = \frac{\tau_o}{\lambda^4} [A_o(r)\cos\theta + \sum_{k=1}^{\infty} a_k A_k(r)\cos(\theta - \sigma_k t)]$$
$$u(r,\theta,t) = \frac{\tau_o}{\lambda^3} [(\frac{A_o(r)}{r} - 1)\sin\theta - \sum_{k=1}^{\infty} b_k F_k(r)\sin(\theta - \sigma_k t)]$$
$$v(r,\theta,t) = \frac{\tau_o}{\lambda^3} [(\frac{dA_o(r)}{dr} - 1)\cos\theta - \sum_{k=1}^{\infty} b_k G_k(r)\cos(\theta - \sigma_k t)]$$

Reference:

Csanady (1968) Birchfield (1969)

Water elevation

Alongshore transport

Radial mode: k=1, 2: gravity waves, k=3: topographic wave

Birchfield and Hickie (1977) JPO

Structured (POM)

Unstructured (FVCOM)

Tidal Resonance in A Semi-closed Channel

Consider a 2-D linear, non-rotated initial problem such as

$$\begin{cases} \frac{\partial V_r}{\partial t} + g \frac{\partial \eta}{\partial r} = 0 & \frac{\partial V_{\theta}}{\partial t} + g \frac{\partial \eta}{r \partial \theta} = 0\\ \frac{\partial \eta}{\partial t} + \frac{\partial r V_r H_0}{r \partial r} + \frac{\partial V_{\theta} H_0}{r \partial \theta} = 0 \end{cases}$$

The solution:

$$\eta_0(r,\theta) = [c_1 J_{\gamma_m}(r\frac{\omega}{\sqrt{gH_0}}) + c_2 Y_{\gamma_m}(r\frac{\omega}{\sqrt{gH_0}})] \cdot \cos[\frac{m\pi(\theta + \alpha/2)}{\alpha}]$$

where

$$c_{1} = A \cdot Y_{\gamma_{m}}'(L_{1}\frac{\omega}{\sqrt{gH_{0}}}) / [J_{\gamma_{m}}(L\frac{\omega}{\sqrt{gH_{0}}})Y_{\gamma_{m}}'(L_{1}\frac{\omega}{\sqrt{gH_{0}}}) - J_{\gamma_{m}}'(L_{1}\frac{\omega}{\sqrt{gH_{0}}})Y_{\gamma_{m}}(L\frac{\omega}{\sqrt{gH_{0}}})$$

$$c_{2} = -A \cdot J_{\gamma_{m}}'(L_{1}\frac{\omega}{\sqrt{gH_{0}}}) / [J_{\gamma_{m}}(L\frac{\omega}{\sqrt{gH_{0}}})Y_{\gamma_{m}}'(L_{1}\frac{\omega}{\sqrt{gH_{0}}}) - J_{\gamma_{m}}'(L_{1}\frac{\omega}{\sqrt{gH_{0}}})Y_{\gamma_{m}}(L\frac{\omega}{\sqrt{gH_{0}}})$$

 $\gamma_m = m\pi / \alpha$

1. Normal condition (non-resonance)

2. Near-resonance condition

Normal Case

Near-resonance case

Near-resonance, 2km, Curvilinear

Slope topography fitting

Equatorial Rossby Soliton

- 2. Inviscid flow
- Asymptotic solutions available to zero and first orders (Boyd 1980,1985)

Δx (ND)	FVCOM (2 nd)		RO (4	MS th)	SEOM (7-9 th)		
	h _n /h _t	C _n /C _t	h _n /h _t	C _n /C _t	h _n /h _t	C_n/C_t	
0.5	0.472	0.917	0.884	1.088	0.923	0.98	
0.25	0.846	0.984	0.926	0.993	0.929	0.99	
0.125	0.92	0.984	0.923	0.986	0.937	0.989	
0.05	0.935	0.983	0.936	0.983	0.915	0.98	

 h_n : Computed peak of the sea surface elevation at 120 units h_t : Analytical peak of the sea surface elevation at 120 units

- C_n : Computed average speed
- C_{t} Analytical averaged speed.

Comments:

- 1. Analytical solution only represents the zero and 1st modes, while the numerical solution contains a complete set of higher order modes. This is not surprised to see numerical models can not exactly reach the analytical solutions.
- 2. FVCOM shows a fast convergence with increase of horizontal resolution.

Hydraulic Jump

Characteristics:

- Barotropic shallow water equations
- No rotation considered, i.e. f = 0, $\beta = 0$
- Steady analytical solutions for u, ζ and the jump angle relative to the x axis.

Analytical solution:

Maximum sea level:	$\zeta_{\rm max} = 0.5 {\rm m}$
Minimum sea level:	$\xi_{\min} = 0 \text{ m}$
Mean sea level:	$\xi_{mean} = 0.5 \text{ m}$
Mean velocity:	$\bar{u} = 7.956 \ m/s$
Mean Froude #:	$Fr = \frac{\overline{u}}{\sqrt{gD}} = 2.075$
Shock angle:	$\alpha = 30^{\circ}$
Thickness:	$\delta = 0 \text{ m}$
Mean deviation:	$\left dy \right = 0 \mathrm{m}$

The case with no horizontal diffusion: FVCOM quickly reaches steady status.

Model	grids	Δt	ζ _{max}	ξ_{\min}	ζ _{mean}	ū	F _r	α	δ	dy
True			0.5	0	0.5	7.956	2.075	30	0	0
FVCOM	80 X 60	0.002	0.688	-0.269	0.5	7.949	2.072	29.952	0.111	0.305
	160 X 120	0.001	0.697	-0.268	0.499	7.951	2.073	30.030	0.063	0.151
	320 X240	0.0005	0.696	-0.272	0.5	7.951	2.073	30.029	0.037	0.076
ROMs	Reach an oscillatory solution without horizontal diffusion.									

Over shocking can be reduced by introducing a slope limiter method (Hubbard, J. Comput. Phys., 1999).

Original code

Modified code with limiter

3-Dimensional Wind-Driven Flow in an Elongated, Rotating Basin

Length: 2*L*; width: 2*B*, and bathymetry:

$$h = h_0 \{ 0.08 + 0.92 * [X(x/L)(1 - (y/B)^2)] \}$$

where X(x) is a function in the form of

$$X(x) = \begin{cases} 1, & |x| < 1 - \Delta x \\ 1 - [\frac{|x| - 1 + \Delta x}{\Delta x}]^2, & |x| \ge 1 - \Delta x \end{cases}$$

 Δx is a constant specified as 0.3% of the total length of the basin.

Governing equations:

$$\begin{cases} \nabla \cdot \vec{v} + w_z = 0\\ f\vec{k} \times \vec{v} = -g\nabla\eta + K_m \frac{\partial^2 \vec{v}}{\partial z^2} \end{cases}$$

B.Cs:
$$\begin{cases} r_{v_z} = \frac{t_s}{v_z} & w = 0 \quad at \ z = 0 \end{cases}$$

$$\begin{cases} v_z = \frac{s}{\rho K_m} & w = 0 & at \ z = 0 \\ r & v = 0 & w = 0 & at \ z = -h \end{cases}$$

Steady status analytical solution for this linear equation system is given as:

$$u + iv = \frac{\sinh[\alpha(z+h)]}{\alpha\cosh(\alpha h)} - \frac{\eta_x + i\eta_y}{\alpha^2} \left[1 - \frac{\cosh(\alpha z)}{\cosh(\alpha h)}\right]$$
$$w = -\int v_y dz$$

where $\alpha^2 = 2i\delta^{-2}$ and $\delta = (2E)^{1/2}$ (*E*: Ekman number).

 $-L \le x \le L, -B \le y \le B$

Be aware that ROMs underestimates *u* and overestimates *w* (color bar scales are different for analytical and ROMs' solutions). This figure is scanned from Winant's working note.