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Unlike finite-difference and finite-element methods, the computational domain in the finite-volume 
methods is divided into many control volumes (CV) and the governing equations are solved in its 
integral form in individual control volumes.  

For example: 

(7.1) 

Structured grids 

uD uD 
vD 
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1. Assign the elevation at the center 
of each rectangular control volume; 
 
2. Define that outflow is positive 
and inflow is negative; 
 
3. Calculate the net flux  
 



Approximation of volume integrals 
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The first order upwind scheme 
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The second order central scheme 



F = f ds!!

Consider an arbitrary function like  
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On the east side, for the first order approximation, 

Fe = fe!y
For the second order approximation, 
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1
2
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For the fourth order approximation, 
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P 

Consider an arbitrary function like  For the first order approximation 

F = fP!x!y
For the second order approximation, 

F = f !x!y



The fourth order approximation can be obtained by using the bi-quadratic shape funcion: 

f (x, y) = ao + a1x + a2 y + a3x
2 + a4 y

2 + a5xy + a6x
2 y + a7xy

2 + a8x
2 y2

Need 9 coefficients,which can determined by fitting the function to the value of f at 9 
locations  (nw,w,sw, n, p,s, ne,e,and se).  
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(16 f p + 4 fs + 4 fn + 4 fw + 4 fe + fse + fsw + fne + fnw )

For the cell-centered grids, the value at P point is known,but values at other points must be 
obtained by interpolation from surrounding cell-centered nodes. 

Comments;  
 
Structured grid finite-volume model is a special type of the finite-difference methods and they 
always can convert from one to another.  So, little efforts need to make to convert a finite-
difference model to a finite-volume model under structured grids. 



3. Popular unstructured triangular FVM grid in CFD:  

1.  Cell-centered 2.  Cell-vertex overlapping 3.  Cell-vertex median 

Characteristics of the oceanic motion: 
 
●  Free surface----How to calculate accurately the integral form of the surface pressure gradient 

forcing? 

●  Steep bottom topography----How to ensure the mass conservation in a two mode model 
system? 

●  Open boundary conditions----How to minimize the wave energy reflection at open 
boundaries? 



A Grid: All variables 
(ζ,,u,v, ω, θ, s..) at nodes 

Cell vertex median grid 

Disadvantage:  
The accuracy of the surface 
elevation gradient forcing is 
sensitive to the shape of the 
control element (due to 
interpolation) 
 
Hard to ensure the mass 
c o n s e r v a t i o n a t o p e n 
boundaries 

Advantage:  
1) Simple 
2) Guarantee  the mass 
conservation for tracers 

        Cell-centered 

B Grid: All variables 
(ζ,,u,v, ω, θ, s..) at centroids 

Advantage:  
1) Simple 
2) Better to advection 
calculation  
Disadvantage:  
Hard to guarantee The 
accuracy of the surface 
elevation gradient forcing 
 
Hard to ensure the mass 
c o n s e r v a t i o n a t o p e n 
boundaries 
 
Hard to ensure the mass 
conservation for tracer 
calculation 

C Grid:  ζ, ω, θ, s, Km, Kh… 

vuvu ,,,
Advantage: 
 
§  Combine the best of A and 

B Grids; 

§  Easy to ensure the mass 
conservation for tracers 

§  Easy to introduce the mass 
conservative open boundary 
conditions 

FVCOM 

Cell-vertex-centered 
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Upwind finite-
difference stream 

Central finite-
difference  stream 

FVCOM finite-volume 
flux scheme 

Δt = 0.05,  Δx=0.1 



Upwind finite-
difference stream 

Central finite-
difference  stream 

FVCOM finite-
volume flux scheme 

Δt = 0.005,  
Δx=0.01 
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   ro=67.5 km 

d=75 m 

  Wind 
Linear, non-dimensional equations: 

Wind-induced oscillation 

  where 

and  
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Solution: 

Wind is suddenly imposed at 
initial 

Reference: 
   
   Csanady ( 1968) 
   Birchfield (1969) 
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Unstructured (FVCOM)  Structured (POM)  



Water elevation  Alongshore transport 







Birchfield and Hickie (1977) JPO 

Radial mode: k=1, 2: gravity waves, k=3: topographic wave 

Analytical FVCOM (5 km) POM (2.5 km) 

1 h 

1 d 



FVCOM (5 km) POM (2.5 km) 5 days 

ζ: Elevation 

: Current V
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Structured (POM)  Unstructured (FVCOM)  



Structured (POM) 

Unstructured (FVCOM) 



Tidal Resonance in A Semi-closed Channel 
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Consider a 2-D linear, non-rotated initial 
problem such as 
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1. Normal condition 
(non-resonance) 

2. Near-resonance 
condition  



Normal Case   



Near-resonance case 



Near-resonance,  2 km (FVCOM), 1 km (POM&ECOM-si) 



Near-resonance,  2km, Curvilinear  



0.5-4 km 

4 km 

 2 km 



Slope 
topography 
fitting 



Equatorial Rossby Soliton  
 L = 48 

D = 
24 

C=0.
4 

Periodic boundary 
condition 

1.  Nonlinear shallow water equation in equatorial β-plane 

2.   Inviscid flow 

3.   Asymptotic solutions available to zero and first orders 

(Boyd 1980,1985) 

Grid A 

Grid B 

Grid C 



Grid A 

Grid B 

Grid C 

0.5 

0.25 
0.125 
0.05 

Δx 
(ND) 

FVCOM 
(2nd) 

ROMS 
(4th) 

SEOM 
 (7-9th) 

hn/ht Cn/Ct hn/ht Cn/Ct hn/ht Cn/Ct 

0.5 0.472 0.917 0.884 1.088 0.923 0.98 

0.25 0.846 0.984 0.926 0.993 0.929 0.99 

0.125 0.92 0.984 0.923 0.986 0.937 0.989 

0.05 0.935 0.983 0.936 0.983 0.915 0.98 

hn:  Computed peak of the sea surface elevation at 120 units 
ht:   Analytical peak of the sea surface elevation at 120 units 
Cn: Computed average speed  
Ct

:  Analytical averaged speed. 
 

Comments: 
 
1.  Analytical solution only represents the zero and 

1st modes, while the numerical solution contains 
a complete set of higher order modes. This is 
not surprised to see numerical models can not 
exactly reach the analytical solutions. 

2.  FVCOM shows a fast convergence with 
increase of horizontal resolution. 

 





•  Barotropic shallow water equations 

•  No rotation considered, i.e. f =0, β = 0 

•  Steady analytical solutions for u, ζ and the jump angle relative to the x axis. 

(m) 

No gradient condition Hydraulic Jump  
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Characteristics:  

Maximum sea level:  
 
Minimum sea level: 
 
Mean sea level: 
 
Mean velocity: 
 
Mean Froude #:  
 
Shock angle:   
 
Thickness:  
 
Mean deviation: 
 
 
 

Analytical solution: 

m5.0max =!

m0min =!

m5.0=mean!
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∆x = 0.5 m, ∆t = 0.002 

The case with no horizontal diffusion: FVCOM quickly reaches steady status.   

∆x = 0.25 m, ∆t = 0.001 ∆x = 0.125 m, ∆t = 0.0005 

Model grids ∆t ζmax ζmin ζmean ū Fr α δ |dy| 

True 0.5 0 0.5 7.956 2.075 30 0 0 

FVCOM 80 X 60 
 

0.002 0.688 -0.269 0.5 7.949 2.072 29.952 0.111 0.305 

160 X 120 0.001 0.697 -0.268 0.499 7.951 2.073 30.030 0.063 0.151 

320 X240 0.0005 0.696 -0.272 0.5 7.951 2.073 30.029 0.037 0.076 

ROMs Reach an oscillatory solution without horizontal diffusion.  



Over shocking can be reduced by introducing a slope limiter method  (Hubbard, J. 
Comput. Phys., 1999). 

Original code  Modified code with limiter 



 3-Dimensional Wind-Driven Flow in an Elongated, Rotating Basin 
                                   Winant (J. Phys. Oceano. 2004) 
 

where X(x) is a function in the form of  

∆x is a constant specified as 0.3% of the total 
length of the basin.  
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B.Cs: 

Steady status analytical solution for this linear 
equation system is given as: 
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where α2 = 2iδ-2 and δ = (2E)1/2 (E: Ekman number).   

Governing equations: 



Analytic 

FVCOM 



V W U 

Be aware that ROMs underestimates u and overestimates w (color bar scales 
are different for analytical and ROMs’ solutions). This figure is scanned from 
Winant’s working note.  

Analytic 

ROMs 


