
Why do we need the data assimilation? 

•  Models are not perfect. Most of ocean models even do not 
resolve the realistic world in both time and space scales.  

•  Data are limited in space and time, and also at most times they 
are not accurate enough. 

•  Increase needs for the ocean forecast, particularly in coastal 
oceans. 

How could we achieve our goal? Does it achievable? What 
critical points do we need consider?  

MAR513-Lecture 6: Data Assimilation 



•  The model should be capable of reproducing right physics and 
simulating the fields of currents and water property at a certain 
accuracy. The data assimilation should be used to improve the 
accuracy  rather than to add additional dynamics into the system. 
It is particularly true for the purpose of the forecast application. 

•  Data is usually insufficient, the data assimilation does not always 
work as one expects. 

•  Advanced data assimilation methods usually requires a huge 
computational power.  

•  Any data assimilation method should be tested for its reliability 
and capability of improving the simulation using the so-called 
“twin experiments”.  



Data Assimilation Methods 

1.  Nudging-directly merge model-predicted values to observation 
given a priori statistical assumption about the model noise and 
errors in the observation data 

2.  Optimal interpolation (OI)-uses the error covariance of the 
observations and model predictions to find their most likely linear 
combination. OI requires a priori statistical assumptions of the 
model noise and observational errors 

3.  Adjoint (variational) methods-based on control theory, in which a 
cost function, defined by the difference between model-derived 
and measured quantities, is minimized in a least-square sense 
under the constraint that the governing equations of the model 
remain satisfied  

4.  Kalman filters (RRKF, EnKF, EnSKF, EnTKF, SEIK)-the most 
sophisticated statistical approaches through the Kalman gain.  



Nudging method 
α(x,y,z,t) is a variable selected to be assimilated; 
F(α, x,y,z,t) is the sum of all the terms in the governing equation of α(x,y,z,t); 
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where αo is the observed value; αm is the model predicted value; N is the number 
of observational points within the search area; γi is the data quality factor at the ith 
observational point with a range from 0 to 1;  Ga is the nudging factor that keeps 
the nudging term to be scaled by the slowly physical adjustment process. Ga must 
satisfy the numerical stability criterion given by 
 
                                                          Ga <1/Δt 
 
Wi (x,y,z,t) is  a product of horizontal, vertical, temporal and directional weight 
functions given as  
 
                                                Wi(x,y,z,t) = wxy� wσ� wt �wθ 
 
 
                                       



Weight functions 
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R is the search radius 
ro is the distance from the location where 
the data exist 

Ro is the vertical search range 

Tw is the half  assimilation window  

Δθ is the directional difference  between the 
local isobath and the computational point  
with a c1 constant ranging from 0.05 to 0.5. 



The OI method 
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Adjoint Assimilation Methods 
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The cost function( to measure the “distance” (error) between the observations and 
model prediction)  is defined as  



The Lagrange function is defined as  
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[note, (x-xo)2 = (x-xo)(x-xo)T; λ is a matrix array called the Lagrange multipliers for 
X (also denoted as adjoint variables)] 
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      Adjoint model 

Forward model 
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      Parameter control equation 




