An Introduction to Kalman Filter
Overview

• A conceptual view (scalar problem)
• Kalman Filter Formula
• Limitation of traditional Kalman Filter and imperfect solution
• Homework (if you are interested)
Conceptual View (One-dimension)

Model
Estimate my speed, I estimate I am at position $\chi^f = 500\text{km}$ from my origin

Somewhat uncertain,
Expressed with standard deviation
$\sigma_1 = 50\text{km}$

Where am I? χ^a

Observation
I also have a very old GPS, it tell me my position at $y=600\text{km}$, with a standard deviation
$\sigma_2 = 20\text{km}$

Combine the both information to get a best *estimation* of my location?

Somewhere between, but more close to GPS location, why?
Mathematical Formulation

\[x^a = ky + (1 - k)x^f \]

\(x^a \) is our best estimation with uncertainty

\(k \) is the unknown coefficients

We want to minimize the uncertainty, i.e. standard deviation \(\sigma \)
\[
\sigma^2 = E[(x^a - x^t)^2] = E[(ky + (1 - k)x^f - x^t)^2]
\]
\[
= E[(k(y - x^t) + (1 - k)(x^f - x^t))^2]
\]
\[
= k^2 E[(y - x^t)^2] + (1 - k)^2 E[(x^f - x^t)^2]
\]
\[
= k^2 \sigma_2^2 + (1 - k)^2 \sigma_1^2 = (\sigma_1^2 + \sigma_2^2)k^2 - 2\sigma_1^2 k + \sigma_1^2
\]
\[
\frac{d\sigma^2}{dk} = 0 \quad \text{Give you the minimal } \sigma
\]
\[
\frac{d\sigma^2}{dk} = 2(\sigma_1^2 + \sigma_2^2)k - 2\sigma_1^2 = 0
\]
\[
=> k = \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}
\]

Here we assume the
\[
\text{cov}(\sigma_1, \sigma_2) = 0
\]
Mathematical Formulation

\[\sigma^2 = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2} \]

i.e.

\[\frac{1}{\sigma^2} = \frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2} \]

Uncertainty was reduced!

\[x^a = (1 - k)x^f + ky = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2} x^f + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} y \]

\[x^a = x^f + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (y - x^f) \]

Observation

analysis model Gain innovation
Statistical View

Uncertainty

Your prediction!
You prediction!

GPS measurement!
Best Estimation when combining your prediction and measurement

- Corrected mean is the new optimal estimate of position
- New uncertainty is smaller than either of the previous two variances
Flow chart of the process---doing previously repeatedly

\[x^a(i) = x^f(i) + K[y(i) - x^f(i)] \]

\[x^a(i + \Delta T) = x^f(i + \Delta T) + K[y(i + \Delta T) - x^f(i + \Delta T)] \]

- \(x^f \): forecast;
- \(x^a \): improved estimation;
- \(y \): measurement;
- \(K \): Gain;
- \(i, i + \Delta T \): time step
- \(\Delta T \): assimilation interval
- \(M_{i \rightarrow i + \Delta T} \): model integration

\[
k = \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}
\]
Without and With assimilation
Long-term prediction without assimilation?

Larger and larger error and uncertainty

\[
\frac{1}{\sigma_x(t_2)} f_{x(t)|z(t_1),z(t_2)}(x|z_1,z_2)
\]

In general case: not scalar

Given the linear dynamical system:

\[x_k = M_{k-1} x_{k-1} + B_{k-1} u_{k-1} + v_{k-1} \]
\[y_k = H_k x_k + w_k \]

- \(x_k \) is the \(n \)-dimensional state vector (unknown)
- \(u_k \) is the \(m \)-dimensional input vector (known)
- \(y_k \) is the \(p \)-dimensional output vector (known, measured)
- \(M_k, B_k, H_k \) are appropriately dimensioned system matrices (known)
- \(v_k, w_k \) are zero-mean, white Gaussian noise with (known)
 - covariance matrices \(Q(k), R(k) \)

the Kalman Filter is a recursion that provides the "best" estimate of the state vector \(x \).
In general case: not a scalar

• Kalman Filter

Step 1. Model prediction: x^f_k is estimate based on

\[x^f_k = Mx^a_{k-1} + Bu_k + v_k \]

Noise (v) with covariance Q
this is your estimation of the error propagation.

\[P^f_k = MP^a_{k-1}M^T + Q \]

Step 2. Calculate Kalman Gain:

\[K = \frac{P^f_k H^T}{(HP^f_k H^T + R)} \]

step 3: correction of model state by KF analysis

\[x^a_k = x^f_k + K(y_k - Hx^f_k) \]

this is your new estimation of the error covariance, reduced from P^f_k to P^a_k
In general case: not a scalar

\(x^f \): forecast \([\text{N} \times 1]\); a state vector (a scalar before: your prediction of your location 1-D)

\(x^a \): (analysis) \([\text{N} \times 1]\); a state vector (a scalar before: 1-D location)

\(y \): observation \([\text{N}_0 \times 1]\); a observationa vector (a scalar before: GPS measurement location 1-D)

\(K \): Kalman gain \([\text{N} \times \text{N}_0]\); a matrix (a scalar before: \(\))

\[
K = \frac{\sigma^2}{\sigma^2_1 + \sigma^2_2}
\]

\[
x^a = x^f + \frac{1}{\sigma^2_1 + \sigma^2_2} O^{-1} (y - x^f)
\]

\(H \) is the observation operator, interpolate the \(x^f \) to \(y \), this is because the observation size are usually smaller than your model state vector.
If we are sure about measurements:
- Measurement error covariance (R) decreases to zero
- K decreases and weights residual more heavily than prediction

If we are sure about prediction
- Prediction error covariance P^f decreases to zero
- K increases and weights prediction more heavily than residual

Scalar case
\[x^a = x^f + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (y - x^f) \]
\[K = \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} \]

General case
\[x^a = x^f + \frac{P^f H^T}{H P^f H^T + R} (y - H x^f) \]
\[K = \frac{P^f H^T}{H P^f H^T + R} \]

If we are sure about measurements:
\[\lim_{R_k \to 0} K_k = H^{-1}. \]

If we are sure about prediction
\[\lim_{P_k \to 0} K_k = 0. \]
Flow chart of the process---doing previously repeatedly

Measurements y \(t = i \)

Filter

- \[x^a(i) = x^f(i) + K[y(i) - H x^f(i)] \]
- \[x^a(i + \Delta T) = x^f(i + \Delta T) + K[y(i + \Delta T) - H x^f(i + \Delta T)] \]

Your estimation

- \[x^f(i + \Delta T) = M_{i \rightarrow i + \Delta T}[x^a(i)] \]
- \[x^f(i + 2\Delta T) = M_{i + \Delta T \rightarrow i + 2\Delta T}[x^a(i + \Delta T)] \]

\(x^f \): forecast [N×1] ; model prediction
\(X^a \): KF analysis condition [N×1] ;
\(y \): observation [N_o×1] ; from field measurements
\(K \): Kalman gain
\(\Delta T \): assimilation interval
\(M_{i \rightarrow i + \Delta T} \): model integration from time i to $i + \Delta T$
Summary

• Recursive data processing algorithm
• Generates optimal estimate of desired quantities given the set of measurements
• Optimal?
 – For linear system and white Gaussian errors, Kalman filter is “best” estimate based on all previous measurements
 – For non-linear system optimality is ‘qualified’
• Recursive?
 – Doesn’t need to store all previous measurements and reprocess all data each time step
Limitation

• Weak nonlinear system (Extended Kalman Filter)

• Computation loads
 \[K = \frac{P^f H^T}{HP^f H^T + R} \]
 – P=O(1e6) x O(1e6) matrix
 – Reduced Rank Kalman Filter (project to leading error subspace O(1e2) from EOF analysis and doing KF in model error subspace then project back)
 – Ensemble Kalman Filter (Represents error statistics \(P^f \) using an ensemble of model states.)

• (see Chen etc. 2009 for coastal ocean idealized case)
Homework (if you are interested)

• Consider you are in a room: your estimation is the temperature is constant (you can have your first guess with any temperature)

• You have a thermometer, with a known variance (uncertainty) $\sigma_1^2 = 1$

• We know the true room temperature is 10 °C with some perturbation, variance $\sigma_2^2 = 0.25$

• Using matlab/others to construct a KF model, show your model states analysis and error variance convergence in KF

• Assuming all error distribution is Gaussian
Analysis state is improved and error variance converged.
Overestimate the model error variance by a factor of 10
Underestimate the model error variance by a factor of 10
References

- Greg Welch and Gary Bishop: An Introduction to the Kalman Filter

- Buehner, M., and P. Malanotte-Rizzoli, Reduced-rank Kalman filters applied to an idealized model of the wind-driven ocean circulation, *JGR*

- Evensen 2003, Ocean Dynamics, Vol 53, No 4 The Ensemble Kalman Filter: Theoretical formulation and practical implementation