MAR 513: Modeling Project \# 1

Consider the following one-dimensional advection problems:

$$
\frac{\partial \phi}{\partial t}+C \frac{\partial \phi}{\partial x}=S(x, t)
$$

where $S(x, t)$ is the source of ϕ. Consider the following two cases.

Case 1:

$$
\begin{aligned}
& S(x, t)=0 \\
& \phi(x, 0)=\left\{\begin{array}{cc}
5 & -2 \leq x \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Case 2:

$$
\begin{aligned}
& S(x, 0)=\left\{\begin{array}{cc}
0.1 & 0 \leq x \leq 4 ; \quad 0 \leq t \leq 5 \\
0 & \text { otherwise }
\end{array}\right. \\
& \phi(x, 0)=0
\end{aligned}
$$

Solve each problem numerically using both the centered time/centered space scheme and the forward time/backward space scheme.

For Case 1: Run the model for the following cases:

C	$\Delta \mathrm{t}$	$\Delta \mathrm{x}$
1	0.5	1
1	0.25	1
3	0.5	1
-1	0.25	1

Plot $\phi(x, 5)$ and $\phi(x, 10)$ for each case.

For case b: Run the model only for the case

$$
\mathrm{C}=1, \Delta \mathrm{x}=1.0 \text { and } \Delta \mathrm{t}=0.5
$$

And plot contours of $\phi(x, t)$ on the (x, t) plane.
After finishing all the model runs,

1) compare the results of the two numerical schemes with each other and with the analytical solutions;
2) Discuss reasons for the differences.

You are welcomed to use any programs to solve this problem. As a request, you must hand in all the programs used to solve this advective equation.

