

Ocean Water Masses-T-S Diagrams and Upper Ocean Waters

C. Chen

General Physical Oceanography MAR 555

School for Marine Sciences and Technology Umass-Dartmouth

- **1. Definition:** Water bodies with particular characteristics of temperature and salinity;
- 2. Method: The temperature (T)-salinity (S) diagram (relative conservative)
- **3. Applications**: a) identify the water masses and its sources and b) water mixing

Basic Concepts

- Single point: A water type
- A smooth curve: a water mass

Three Water Types

In general, mixing of two water mass shows a straight line on a T-S diagram, but it is not always true.

Example: The North Atlantic Central Water in the Subtropic Gyre

Formation of the water mass by the sinking of surface water along isopycnic surfaces. This type of the water mass shows a straight line on the T-S diagram with no relevance to mixing of two water masses.

QS. Could we use the in-situ water temperature and salinity to draw a T-S diagram and compare the different water masses?

The T-S curve for Meteor station 200 at 90 S in the Atlantic Ocean.

Potential Temperature and Potential Density

If $T_2 > T_1$, does it means that the water parcel 2 is warmer ?

Answer: NO! The water is slightly compressible and these two water parcels have different pressures

How could we compared two water parcels with different pressures?

Then,

the waters can compare each other based on their potential temperature.

In-situ Water Density (σ_t) and Potential Density (σ_{θ})

The water density:

$$\rho = \rho(T, S, P)$$

where T and S are the in-situ water temperature and salinity.

The sigma-t (σ_t) is defined as

$$\sigma_t = \rho(T, S, P) - 1000$$

Replacing T by the potential density, we can define the potential density (sigma- θ) as

$$\sigma_{\theta} = \rho(\theta, S, P_o) - 1000$$

In some applications, you can find

$$\sigma_{\theta_o}; \sigma_{\theta_1}; \sigma_{\theta_2} \cdots$$

defined using the different reference pressure levels.

CIW-California Intermediate Water: **low salinity**

MIW-Mediterranean Intermediate Water: high salinity

Upper Ocean Water Masses

Strongly influenced by the pattern of surface currents in the mixed layer and the upper part of the permanent thermoclines

Central Waters are characteristics of subtropic gyres.

Atlantic Ocean	Pacific Ocean	Indian Ocean
West North Atlantic Central Water (WNACW)	West North Pacific Central Water (WNPCW)	South Indian Central Water (SICW)
T: 7.0-20.0°C	T: 10.0-22.0°C	T: 8.0-25.0°C
S: 35.0-36.7 PSU	S: 34.2-35.2 PSU	S: 34.6-35.8 PSU
East North Atlantic Central Water (ENACW)	East North Pacific Central Water (ENPCW)	
T: 8.0-18.0°C	T: 12.0-20.0°C	
S: 35.2-36.7 PSU	S: 34.2-35.2 PSU	
South Atlantic Central Water (SACW): T: 5.0-18.0°C S: 34.3-35.8 PSU	West South Pacific Central Water (WSPCW) T: 6.0-22.0°C S: 34.5-35.8 PSU	
	East South Pacific Central Water (ESPCW) T: 8.0-24.0°C S: 34.4-36.4 PSU	

18° degree water is central water. It is also called "mode water". It is characterized by the minimum vertical density gradient.

Formation of the Central Water: the convergence and subduction of the subtropic gyre and also vertical convection caused by the wintertime cooling

A T-S diagram also can help us determine the characteristics of water mixing in the water column

Type 1: Isopycnal mixing \Rightarrow mixing along the density surface Type 2: Diapycnal mixing \Rightarrow mixing across the density surface

Central Waters show the diapycnal mixing, so it does not form only by the along-density surface subduction

T-S diagram also can be used to track the mixed water back to their upstream source.

An example in Kuroshio southwest of Japan

