Review: Lecs 19-23

G. Cowles

General Physical Oceanography
MAR 555

School for Marine Sciences and Technology
Umass-Dartmouth
Anatomy of an Ideal Wave

Spatial Dimension:

- $\lambda, \Lambda, L$ (Wavelength) [m]
- $k = \frac{2\pi}{\Lambda}$ (Wavenumber) [1/m]

Temporal Dimension:

- $T$ (Period - time between successive crests measured by fixed observer) [s]
- $\omega = \frac{2\pi}{T}$ (Angular Velocity) [1/s] (strictly [rad/s])

Celerity: $c = \frac{L}{T}$

Amplitude can be described equation: $a(x,t) = A \cos(kx - \omega t)$
Long vs. Short Waves

We maintain our small amplitude approximation and look at the limits of $h/L$

<table>
<thead>
<tr>
<th>$L &lt;&lt; h$ (“short or deep wave”)</th>
<th>$L &gt; h$ (“long or shallow wave”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave cannot feel bottom</td>
<td>Wave interacts with bottom</td>
</tr>
<tr>
<td>Orbits are circular</td>
<td>(can suspend sediment)</td>
</tr>
<tr>
<td>Dispersive: speed dependent on</td>
<td>Non-dispersive</td>
</tr>
<tr>
<td>wavelength</td>
<td>Orbits are elliptical (flat)</td>
</tr>
</tbody>
</table>

![Diagram of short waves](image1)

![Diagram of long waves](image2)
Dispersion, Celerity, and Energy

\[ \omega^2 = gk \tanh(kh) \]  General dispersion relationship for surface gravity waves

\[ \omega^2 = gk \]  Deep water wave limit (h >> L)

\[ \omega^2 = gk^2h \]  Shallow water wave limit (h < L)

\[ c = \frac{\omega}{k} = \sqrt{\frac{g}{k}} \]  Deep water celerity: depends on properties of the wave (wavelength)!

\[ c = \frac{\omega}{k} = \sqrt{gh} \]  Shallow water wave celerity: depends only on the medium (square root of depth)

\[ c_g = \frac{\partial \omega}{\partial k} \]  Group Velocity, This is the speed at which Energy is carried!

\[ c_g = \frac{g}{2\omega} = \frac{c}{2} \]  Group velocity is 1/2 the wave celerity for deep water waves

\[ c_g = \sqrt{gh} = c \]  Group velocity and celerity are the same for shallow water waves.
Short (Deep) Surface Gravity Waves: Wind-Driven

Important Variables:

• Wind Stress
• Time
• Fetch

Note

• Amplitude Asymptotes
• Lakes have short waves
• Speed/Stress relationship is very complex
• Need statistics to describe ($H_{sig}$, $T_p$)
At the Coast

Refraction, Shortening, Steeping, Breaking
Interfacial Waves: Comparison

Air

Water

\[ \rho_{\text{air}} \ll \rho_{\text{water}} \]

Surface Gravity Wave

Water

\[ \rho_{\text{light}} \approx \rho_{\text{heavy}} \]

Internal Wave

Lighter (warm or fresh) Water

Heavier (cold or salty) Water
Short Internal Waves

General Dispersion Relation

\[
[\omega^2 - gk \tanh k(h_1 + h_2)] \left[ \omega^2 - \frac{(\rho_2 - \rho_1)gk}{\rho_2 \coth kh_2 + \rho_1 \coth kh_1} \right] = 0
\]

Limiting Case 1: Short (Deep Waves)

\[
\frac{\lambda_i}{h_1} < 1 \quad \frac{\lambda_i}{h_2} < 1
\]

\[
\omega_i^2 = \left[ \frac{\rho_2 - \rho_1}{\rho_2 + \rho_2} \right] gk; \quad C_i^2 = \frac{g\Delta\rho}{k(\rho_1 + \rho_2)}
\]

- Short Internal Waves are Dispersive
- Compared to Surface Gravity Waves they are very Slow!

\[
\text{for} \quad \frac{\Delta\rho}{\rho} = 2e^{-3}: \quad \frac{C_i}{C_s} = \sqrt{\frac{\Delta\rho}{\rho_1 + \rho_2}} \approx 1/30
\]
Long Waves

Waves are Not Dispersive (Analogous to Long Surf Waves)

\[ \omega^2 \equiv \left( \frac{g k^2 \Delta \rho}{\rho_2} \right) \left( \frac{h_1 h_2}{h_1 + h_2} \right) \]

What about a thin upper layer and deep lower layer

\[ C_i^2 = \frac{g \Delta \rho h_1}{\rho_1} \]

Just like a surface gravity wave in depth \( h_1 \) with a speed reduction of

\[ \sqrt{\frac{\Delta \rho}{\rho_1 + \rho_2}} \]

Example: \( S_1 = 0, S_2 = 30, T_1 = T_2 = 10, h_1 = 5 \text{m} \): \( \Rightarrow C_i = .8 \text{m/s} \)
Reduced Gravity

The key parameter in these relations is the reduced gravity $g^*$

$$g^* = g \frac{(\rho_2 - \rho_1)}{\rho_2}$$

Celerity

$$\frac{C_i}{C_s} = \sqrt{\frac{\Delta \rho}{\rho_1 + \rho_2}}$$  For both Long and Short

Energy

$$E = \frac{1}{2} \rho g^* A^2$$
Internal Waves in Continuously Stratified Ocean:

Brunt-Väisälä Frequency (N)

\[ N^2 \approx \left( -\frac{g}{\rho} \right) \left( \frac{\partial \rho}{\partial z} \right) \]

Frequency \( \omega = N \cos \Theta \)

Celerity \( C_i = \frac{N \cos \Theta}{k} \)

Depends on:

- Properties of the medium (N)
- Wavenumber (is dispersive)
- Direction!

N is the upper limit on the wave frequency!
When is Rotation important

Acceleration:

\[ U \text{ varies as } \sin\left(\frac{2\pi t}{T}\right) \]

\[ \frac{\partial u}{\partial t} \approx \frac{2\pi}{T} u \]

Coriolis:

\[ fu \]

When wave period approaches pendulum half-day..

\[ T \approx \frac{2\pi}{f} \]

Coriolis and Acceleration are of same order!!
Kelvin Waves:
Inviscid/Linear N-S Equation + rho/h constant + boundary

Cross-shore Momentum Equation:
Geostrophic Balance

\[ g \frac{\partial \eta}{\partial y} = -fU \]

The general solution for the amplitude is:

\[ \eta = \frac{H}{2} e^{-fy/C} \cos(kx - \omega t) \]

Velocity:

\[ U = \frac{H C}{2d} e^{-fy/C} \cos(kx - \omega t); V = 0 \]

Celerity:

\[ c = \sqrt{gd} \]

Solution first derived by Lord Kelvin: Is is a Kelvin Wave!
Structure

Credit?
Rossby (Planetary) Waves

Key is conservation of potential vorticity \( PV = \frac{\zeta + f}{D} \)

Consider some initial perturbation around a line of constant latitude.

Restoring force is generated supported westward wave propagation.

Note that changes in \( D \) can also support waves (Topographic Planetary Waves)

\[ f \text{ increases} \quad \therefore \zeta < 0 \]

\[ \zeta = 0 \Rightarrow q = f_o \]

Material contour moves to left (westward)

Displaced position of blob
\[ f = f_o + \beta y \text{ decreases} \quad \therefore \zeta > 0 \]

since \( q = f_o \) constant

McLandress
Astronomically Forced Long Surface Gravity Waves: Tides

The tide is the name given to the periodic rise and fall of sea level. This is one of the earliest scientific ventures of oceanic exploration.

Causes of Tides (for the global scale): Gravitational pull of the moon and sun
If we stop the Earth from spinning on its axis relative to an inertial reference frame and let the moon continue in its normal orbit, we find that every point on the Earth rotates around the center of mass point at the same rate.
Gravitational Force ($\vec{F}_g$):

$$\vec{F}_g = \mu \frac{M_1 M_2}{r^2} \left( \frac{\vec{r}}{r} \right)$$

The gravitational force is larger on the moon side than the opposite side of the moon due to the differences in distance.
Sum of gravitational and centrifugal forces

At the center of the earth:

\[ |\vec{F}_c| = |\vec{F}_g| \]

On the side facing to the moon:

\[ |\vec{F}_c| < |\vec{F}_g| \]

On the back side to the moon:

\[ |\vec{F}_c| > |\vec{F}_g| \]

\( \mathbf{x} \) and \( \mathbf{x}' \) indicate the change in position of a point on Earth’s surface after half a lunar day (12 hours 25 minutes), which have two equal tides per 24 hours and 50 minutes at these two positions.

\textbf{Semidiurnal tide: period-12.42 hours}
The moon’s location relative to the earth varies with time. The one-day movement of the moon cause the delay of high water or low water timing by approximately 50 minutes.
The moon moves at various angles to the north and south of the equator up to a maximum angle of 35° (depending on the season and also the time of the lunar month. Then observer at the location of “x” will notice two high tides with unequal height per lunar day. It is called “diurnal inequality”.
### Spring and Neap tides [fortnightly (14-days) variation]

<table>
<thead>
<tr>
<th></th>
<th>Spring Tide</th>
<th>New Moon</th>
<th>Spring Tide</th>
<th>Full Moon</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Spring Tide</strong></td>
<td><img src="image1" alt="Diagram" /></td>
<td><img src="image2" alt="Diagram" /></td>
<td><img src="image3" alt="Diagram" /></td>
<td><img src="image4" alt="Diagram" /></td>
</tr>
<tr>
<td><strong>Neap Tide</strong></td>
<td><img src="image5" alt="Diagram" /></td>
<td><img src="image6" alt="Diagram" /></td>
<td><img src="image7" alt="Diagram" /></td>
<td><img src="image8" alt="Diagram" /></td>
</tr>
<tr>
<td><strong>First quarter Moon</strong></td>
<td><img src="image9" alt="Diagram" /></td>
<td><img src="image10" alt="Diagram" /></td>
<td><img src="image11" alt="Diagram" /></td>
<td><img src="image12" alt="Diagram" /></td>
</tr>
<tr>
<td><strong>Third quarter Moon</strong></td>
<td><img src="image13" alt="Diagram" /></td>
<td><img src="image14" alt="Diagram" /></td>
<td><img src="image15" alt="Diagram" /></td>
<td><img src="image16" alt="Diagram" /></td>
</tr>
</tbody>
</table>

**Top view from the north pole**
Amphidromic System

(a) IDEALIZED ROTARY TIDAL MOTION

(b) AMPHIDROMIC SYSTEM

Acetate 24 (Figure 7-7)
# Tidal Terminology

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>High water (or high tide):</td>
<td>the maximum water level during a tidal period</td>
</tr>
<tr>
<td>Low water (or low tide):</td>
<td>the minimum water level during a tidal period</td>
</tr>
<tr>
<td>Mean tidal level:</td>
<td>the mean water level relative to a reference point over a long-term average</td>
</tr>
<tr>
<td>Tidal range:</td>
<td>the difference between high and low waters</td>
</tr>
<tr>
<td>Daily inequality:</td>
<td>the difference between two successive low or high tides</td>
</tr>
<tr>
<td>Spring tide:</td>
<td>the tides at full and new moons</td>
</tr>
<tr>
<td>Neap tide:</td>
<td>The tide at first and third quarter moons</td>
</tr>
</tbody>
</table>
**Major Tidal Constituents**

The tides observed in the ocean is the sum of more than hundred harmonic periodic oscillations. In most situations, the tide is dominated by five major tidal constituents given below.

<table>
<thead>
<tr>
<th>Tidal Constituent</th>
<th>Period and Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_2$ tide</td>
<td>12 h 25 min (1/2 lunar day)-semidiurnal lunar tide produced by the moon</td>
</tr>
<tr>
<td>$S_2$ tide</td>
<td>12 hours (1/2 solar day)-semidiurnal solar tide produced by the sun</td>
</tr>
<tr>
<td>$N_2$ tide</td>
<td>12.66 hours-larger lunar elliptic induced tide.</td>
</tr>
<tr>
<td>$O_1$ tide</td>
<td>24 h 50 min-diurnal lunar tide produced by the moon</td>
</tr>
<tr>
<td>$K_1$ tide</td>
<td>24 hours-diurnal solar tide produced by the sun</td>
</tr>
</tbody>
</table>
Tidal Classification

In most regions, the change of the tidal elevation and currents are dominated by either semidiurnal tides or diurnal tides. A more systematic classification of tidal types is defined by the so-called “Form Ratio” given as

$$F = \frac{K_1 + O_1}{M_2 + S_2}$$

<table>
<thead>
<tr>
<th>$F$</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0.25</td>
<td>Semidiurnal tides: two high waters and low waters with about the same height each day. The mean spring tide range = 2 ($M_2 + S_2$)</td>
</tr>
<tr>
<td>&gt;0.25 and &lt;1.5</td>
<td>Mixed tides with mainly semidiurnal tides: large inequalities in tidal range and time between highs and lows each day. The mean spring tide range = 2 ($M_2 + S_2$)</td>
</tr>
<tr>
<td>1.5-3.0</td>
<td>Mixed tides with mainly diurnal tides: frequently only one high water per day. The mean spring tide range = 2 ($K_1 + O_1$)</td>
</tr>
<tr>
<td>&gt; 3.0</td>
<td>Diurnal tides: generally only one high water per day. The mean spring tide range = 2 ($K_1 + O_1$)</td>
</tr>
</tbody>
</table>
LIVERPOOL (53°25'N 3°00'W)  
\[ F = \frac{K_1 + O_1}{M_2 + S_2} = 0.06 \]  (SEMI-DIURNAL)

VANCOUVER (49°17'N 123°07'W)  
\[ F = 1.14 \]  (MIXED, predom. SEMI-DIURNAL)

LABUAN (5°17'N 115°15'E)  
\[ F = 1.90 \]  (MIXED, predom. DIURNAL)

HON DAU (20°40'N 106°49'E)  
\[ F = 16.3 \]  (DIURNAL)
Tidal Currents

In the global and regional oceans, the tidal currents rotate with time over a tidal cycle.

Semi-diurnal equal tide

Semi-diurnal unequal tide
The tides observed in the coastal region consists of two parts: equilibrium tides and tidal waves propagating from the open ocean.

- Strong near the coast and weak in the open ocean;
- Vary over topography in the shallow water and estuaries;
- Resonance when the tidal frequency match the local geometric frequency.
In the Gulf of Maine, the semi-diurnal equilibrium tidal amplitude \( \sim 0.38 \text{ m} \)
Resonance solution: Open Domain

For the first case, \( L = 2\lambda \) and \( n = 1 \)

\[
T = \frac{2L}{\sqrt{gh}}
\]

Let us consider the semi-enclosed bay in which the water flow in during the flood tide and flow out during the ebb tide. The length of the bay \( L_b = L/2 \)

If the period of the progressive wave entering this bay is equal to this period, the oscillation will become “resonant”
Slightly $< L_b$

$< < L_b$
> 2 m with a maximum tidal range of \(~ 8\) m

The lowest natural surface gravity wave mode in the Gulf of Maine (GOM) and Bay of Fundy (BF) region is \(12.8\) hours

The \(M_2\) tidal wave (\(12.42\) hours) enters the GOM/BF is near the resonance period:

High tidal elevation!

Garrett (1972)
**Internal Tides**

**Causes:**

When a surface tidal wave propagates onto the slope, the interaction between the tidal currents and bottom topography can lead to the vertical oscillation of pycnoclines and hence produce internal waves with the tidal period. Such a tidal-induced internal wave is called the “internal tide”.

- Large amplitudes but slow phase speed
- Intensifies near the bottom and decreases upward
Internal tides in Bute Inlet, British Columbia, Canada in July 1953. Note that the surface tide is magnified by a factor of 4.