MAR650 Homework Problem 4:

Assume there were two northerly wind events blowing along the west coast of the U.S. at 30° N latitude during the summer season: one with a wind speed of 10 m s^{-1} and the other 20 m s^{-1} . For given conditions and parameter values listed in Table 1, calculate the daily gross primary production in term of g C m⁻² day⁻¹ within the surface mixing layer after 1 day. Please use the vertically averaged light intensity.

Conditions:

- (1) The total upwelling-induced vertical flux equals to the offshore Ekman transport.
- (2) Upwelling zone width equals to the Internal Rossby Deformation Radius.
- (3) Mixed layer depth is 10 and 20 m, respectively in the two cases.

Table 1. Parameter values

Parameter	Surface mixed layer	Deeper layer
Nitrogen (mmol N m-3)	0.1	5
Phytoplankton (mmol C m-3)	10	0.1
Water density	1023	1027
Temperature	15	10
Light attenuation (m ⁻¹)	0.15	0.06

Optimal temperature T ₀	15
Temperature coefficient	0.07
Nutrient half saturation (mmol N m ⁻³)	1
Total solar radiation (W m ⁻²)	400
Optimal PAR (W m ⁻²)	100
Maximum gross rate (d ⁻¹)	2.5
Air density $ ho_a$ (kg m $^{ extstyle -3}$)	1.2
Air-sea drag coefficient C_d	1.2E-3
Light-photosynthesis function	$f(I) = \frac{I}{I_{opt}} e^{\left(1 - \frac{I}{I_{opt}}\right)}$
Wind stress function	$\tau = \rho_a C_d V^2$