MAR650 Lecture 3: Global-Scale Physical-Biological Interaction Processes

Thermocline Circulation:principally exists in the upper few hundreds
of meters and mainly driven by surface
wind stress. It is also called "the wind-
driven circulation" or "upper oceanic
circulation".

Thermohaline circulation:prevails in the deep ocean and mainly
driven by the buoyancy forcing associated
with cooling (heated) by the cold (warm)
air, and modified by sources and sinks of
the fresh water. It is also called "the deep
circulation" or "abyssal circulation".

Observed currents: a result of the combined effects of wind- and buoyancydriven forcings.

1

Biological observational evidences:

Euphotic layer ~ 200 m in the open ocean. Most of marine life are in the a few hundred meters' upper ocean;

DO and CO_2 cycles ~ related to the air-sea interaction at the sea surface

Deep circulation mainly originates from the surface cooling and ices formation in the polar region, it is important to the climate-scale variation of global ocean nutrients and other chemical maters.

Wind Field on the northern hemisphere July

Wind field on the northern hemisphere January

N. Equatorial Current Equatorial Counter Current – - S. Equatorial Current 3000 Km Scale at the Equator. 3000 Mi.

Wintertime upper layer circulation

Global Distribution of Chl-a Concentration

Subpolar gyre: 15-150 mg/m² In the divergence zone near the equator: 15-30 mg/m² Subtropic gyre: 5-25 mg/m²

In the euphotic layer:

In the subpolar gyre:

5~25 μg/L (NO₃), 0.1~0.5 g C/m² (primary production), 30~50 g/m² (zooplankton biomass)

In the subtropic gyre:

<0~5 µg/L (NO₃), <0.1 g C/m² (primary production), <7 g/m² (zooplankton biomass)

In Ocean Biology:

Call the Subtropic gyre region: **Biological Desert**

Question 1: What is physical and biological mechanism causing the formation of the biological desert in the subtropic gyre region?

Physical : Wind-driven anti-cyclonic circulation gyre, mixed layer/thermoclines, convection/advection, diffusion; eddy interactions

Biological: Nutrients

Convection: In the ocean, it usually refers to the free convection due to the buoyancy

Advection: In the ocean, it usually refers to the water transfer driven by currents

Good light condition, mixed layer depth: 100-200 m in summer, 400 m in winter

Limit the upward nutrient flux from the deep ocean to the euphotic layer 10

Main Sources of nutrients' supply in the mixed layer:

- 1) Nutrient recycling among the food web— a nutrients-phytoplankton-zooplankton system;
- 2) Upward flux through the thermoclines—turbulent diffusion and meso-or small scale eddy interaction.

Phytoplankton production is maintained through a new primary production (with a nutrient supply from a deep ocean: NO_3) and a regenerated production (with a nutrient supply from internal food web recycling: NH_4).

 $f = \frac{Phytoplankton new production}{Phytoplankton new production + Phytoplankton regenerated production}$

In subtropic gyre $f: 0.05 \sim 0.1$, new production only account for 5%~10% of the total production, so that the new production is not enough to compensate the phytoplankton loss grazed by zooplankton: Therefore, when the phytoplankton biomass once become lower, this state could last for a long time.

Biological observational evidences show that the biological field in the subtropic region remains at the quasi-steady state:

Phytoplankton Production = Zooplankton Grazing

Once phytoplankton biomass is lower, zooplankton biomass will be lower, too.

Quantitative estimation of the contribution of vertical diffusion:

King and Davol, 1979 and Lewis et al. (1986): based on nutrocline gradient

 $K_h \sim 0.3 \text{ cm}^2 / \text{s} \sim 3 \times 10^{-5} \text{ m}^2 / \text{s}$

Ledwell (1993): dye experiments over 5 months:

$$K_{h} \sim 0.11 \pm 0.02 \text{ cm}^{2} / \text{s} \sim 1.1 \times 10^{-5} \pm 0.2 \times 10^{-5} \text{ m}^{2} / \text{s}$$

Ledwell's estimation is much accurate. If we believe this value, then the upward nutrient flux through the nutroclines should be 3 times smaller than the value biological scientists thought in the70's and 80's.

Therefore, the upward diffusion nutrient flux from a deep ocean is too weak to support the new production in the mixed layer in the subtropic gyre region.

Questions:

What is another physical source for upward nutrient flux in the subtropic gyre region?

Eddy interaction (McGillcuddy et al., Nature, 394, 263-265)

 $f = 2\Omega \sin \theta$: Planetary vorticity caused by the earth rotation

 $\frac{\zeta + f}{H}$: Potential voricity. This voricity remains constant if no friction is considered.

Observational evidences:

There are many small-or meso-scale cold-core and warm-core eddies: $10 \sim 100$ km with a life time of 30 days.

Vertical stretching scale >> 0.1 m/day (a downwelling vertical velocity scale caused by the wind vorticity).

Under shear instability condition

17

Under the vortex condition

http://www.science.oregonstate.edu/ocean.productivity/highlights.php

Climate-driven trends in contemporary ocean productivity

Michael J. Behrenfeld¹, Robert T. O'Malley¹, David A. Siegel³, Charles R. McClain⁴, Jorge L. Sarmiento⁵, Gene C. Feldman⁴, Allen J. Milligan¹, Paul G. Falkowski⁶, Ricardo M. Letelier² & Emmanuel S. Boss⁷

7 December 2006 Vol. 444 Nature

- Based on Vertically Generalized Production Model (VGPM)
- Initial increase = 1,930 TgC/yr
- Subsequent decrease = 190 TgC/yr
- Global trends dominated by changes in permanently stratified ocean regions (ann. ave. SST < 15°C)

