Homework Problem Set 3

Consider a wind stress field described as

$$\begin{aligned} \tau_x &= -\tau_o \cos \frac{\pi}{60^0} y \quad 0 \leq y \leq 60^0 \\ \tau_y &= 0 \end{aligned}$$

where τ_x and τ_y are the *x* (east-west) and *y* (south-north) components of the surface wind stress, and τ_o is the magnitude of the surface wind stress. Please derive the solution of Ekman pumping vertical velocity using the lecture note. Here $\tau_o = \rho_a C_d V_{10}^2$, where ρ_a is the air density, C_d is the drag coefficient, and V_{10} is the wind speed at the 10-m height. For $V_{10} = 10$ m/s, $\rho_a = 1.2$ kg/m³, and $C_d = 1.2 \times 10^{-3}$, please calculate τ_o and also estimate the Ekman pumping flux per meter square area at 30°N. Under such the wind field, how large does the diffusivity require to carry nutrients below the thermocline into the upper mixed layer? Is this diffusivity realistic in the subtropical ocean?