MAR650 Lecture 9: Ecosystem Processes in Coastal Oceans

- Coastal boundary
- $O(\Delta h) \sim O(h)$
- $L_x \ll L_y$
 - Motion is constrained within the shelf;
 - Significant time- and spatial variations.

Over the continental shelf,

$$L_x \ll L_y$$

Looking at the horizontal continuous equation,

$$\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} = 0$$

$$\downarrow \qquad \downarrow$$

$$O\left(\frac{U}{L_x}\right) \sim O\left(\frac{V}{L_y}\right) \longrightarrow \qquad U \sim V\left(\frac{L_x}{L_y}\right) << V$$

The cross-shelf velocity is one order of magnitude smaller than the along-shelf velocity.

Unlike the open ocean, the cross-shelf velocity over the continental shelf generally does not satisfy the geostrophic balance. The structure and distribution of the cross-shelf velocity is closed related to vertical mixing. In the open ocean:

The motion is quasi-geostrophic with a slowly time variation scale

In the coastal ocean:

The motion is featured by strong nonlinear multiple-scale processes

Examples:

 Small-scale high frequency surface waves ⇒ Large-scale vertical resuspension of the sediments

 Small-scale turbulent mixing
 → Formation of tidal mixing fronts

 Point freshwater discharge
 → Large-scale buoyancy-driven flow

 Most interesting physical process:

Most interesting physical process:

1) Oceanic fronts, 2) Near-surface and bottom turbulent boundary layers; 3) Coastal trapped waves; 4) Steady and time-dependent wind- and density-driven flows; 5) Wind-mixing, tidal-mixing, tidal residual currents,

Coastal Oceanic Fronts

1) Low-salinity front; 2) Tidal mixing front; 3) Shelf break front; 4) Upwelling front

1) Low-salinity front

Low-salinity plume or estuarine plume

Tidal Mixing Front

H/U³ (Simpson and Hunter, 1974)

Lecture 25: Coastal Ocean Process-Oceanic Frontal System (Continued)

1. Tidal Mixing Front (Tidal Front)

Cold

Two processes:

a) Surface buoyancy flux produced by the solar radiation: make the water stratified

b) Kinetic energy dissipation caused by tidal currents: mix the water

Upwelling Front

Shelf-break fronts

Gulf Stream

Kuroshio

Shelf Break Front on the southern flank of Georges Bank

Example I of river plume: The Mississippi River

From Dr. Justic at LSU

LATEX shelf

Example II of river plume: South Atlantic Bight

Nutrients due to the Changjiang River Discharge

Year	DIN (µmol N/L)	DIP (µmol P/L)	DIN/DIP
1986	9	0.58	16
1992	56	0.68	82
1997	106	>0.91	117 (450)

DIN: Dissolved inogranic nitrogen DIP: Dissovled inorganic phosphorus

The Red Tide in the Massachusetts Bay

Inverse particle tracking

Example of tidal mixing front: The Gulf of Maine/Georges Bank

Generally theory:

The front acts like a barrier to limit the water exchange across the front. In biology, it acts like a "retention zone"-----longer residence time.

QS: How are the nutrients transported across the front?

Main physical processes:

- 1) Frontal baroclinic instability-eddy formation
- 2) Nonlinear interaction of tidal currents
- 3) Asymmetric tidal mixing
- 4) Variable winds
- 5) Chaotic exchanges

1. Baroclinic instability

Simply an eddy like a cylinder with a depth of D and radius of $4L_R$, where L_R is the internal Rossby deformation radius ($L_R = \sqrt{g\Delta\rho D/\rho f^2}$),

where ΔC is the cross-frontal difference of nutrient concentration

Wind-driven cross-frontal transport for the low-salinity front

2. Nonlinear interaction between tidal currents

Lagrangian velocity:
$$\vec{V}_L = \frac{\vec{X}_T - \vec{X}_o}{T}$$

 $\vec{X}_o = (x_o, y_o, z_o)$
 $\vec{X}_T - \vec{X}_o$
 $\vec{X}_T = (x_T, y_T, z_T)$

 \vec{X}_o , \vec{X}_T : The positions at starting point and end point over a tidal cycle.

Let \vec{v}_E be the Eulerian velocity (measured at a fix location), the Stokes' velocity is defined as

$$\vec{V_S} = \vec{V_L} - \vec{V_E}$$

• If the flow field is linear, the residual flow equal to zero.

• If the flow field is weak nonlinear, the Stokes' velocity should be one order of magnitude smaller than the Eulerian velocity;

• If the flow field is strong nonlinear, the Stokes' velocity could be the same order of magnitude as the Eulerian velocity.

During the flood period:

Mixing is caused by shear instability plus gravitational instability---stronger

During the ebb period:

Mixing is caused mainly by shear instability

4) Variable winds

For a constant wind, if no any other forcing exists, the fron would move to the direction o the Ekman transport, no cross frontal transport could occur.

However, if the cross-frontal exchange could happen if tidal mixing exist under a variable wind condition.

Chaotic transport

Periodic tidal currents

Chaotic water exchange

